Real Hypersurfaces and Complex Analysis
نویسنده
چکیده
1480 NOTICES OF THE AMS VOLUME 42, NUMBER 12 T he theory of functions (what we now call the theory of functions of a complex variable) was one of the great achievements of nineteenth century mathematics. Its beauty and range of applications were immense and immediate. The desire to generalize to higher dimensions must have been correspondingly irresistible. In this desire to generalize, there were two ways to proceed. One was to focus on functions of several complex variables as the generalization of functions of one complex variable. The other was to consider a function of one complex variable as a map of a domain in C to another domain in C and to study, as a generalization, maps of domains in Cn. Both approaches immediately led to surprises and both are still active and important. The study of real hypersurfaces arose within these generalizations. This article surveys some contemporary results about these hypersurfaces and also briefly places the subject in its historical context. We organize our survey by considering separately these two roads to generalization. We start with a hypersurface M2n−1 of R2n and consider it as a hypersurface of Cn, using an identification of R2n with Cn. We call M a real hypersurface of the complex space Cn to distinguish it from a complex hypersurface, that is, a complex n− 1 dimensional submanifold of Cn. This said, the dimensions in statements like M2n−1 ⊂ Cn
منابع مشابه
Pseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملTotally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملJacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form
Let M be a real hypersurface of a complex space form with almost contact metric structure (φ, ξ, η, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator Rξ = R(·, ξ)ξ is ξ-parallel. In particular, we prove that the condition ∇ξRξ = 0 characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic ...
متن کاملHypersurfaces of a Sasakian space form with recurrent shape operator
Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملOn the Embeddability of Real Hypersurfaces into Hyperquadrics
A well known result of Forstnerić [18] states that most real-analytic strictly pseudoconvex hypersurfaces in complex space are not holomorphically embeddable into spheres of higher dimension. A more recent result by Forstnerić [19] states even more: most real-analytic hypersurfaces do not admit a holomorphic embedding even into a merely algebraic hypersurface of higher dimension, in particular,...
متن کاملReal Hypersurfaces with Constant Principal Curvatures in Complex Hyperbolic Spaces
We present the classification of all real hypersurfaces in complex hyperbolic space CHn, n ≥ 3, with three distinct constant principal curvatures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995